2019-Nov-19 (pre-lecture) MATB44 Prof. cm william in
Monday, November 18, 2019 1:15 PM
Outline:

- Lineacrization and stability analysis's
- Differace equations

Previously:
We classified linear 2D systems. $\dot{x}=A x$ i.e. if the real parts of both eigenvalues ace negative, then the system is stable at the origin, and is a sink.
Can we do something similar with nonlinear and/or nonhomogeneous systems?
lotha-Volterra
Suppose we have rabbits of sheep.

- With infinite resources, we get exponential growth, but rabbits breed more quickly,

$$
\text { erg, } \begin{aligned}
\dot{x}=3 x & \Rightarrow \quad x=x_{0} e^{3 t} \\
& \dot{y}=2 y \quad
\end{aligned} \quad \Rightarrow \quad y=y_{0} e^{2 t}
$$

- With limited resources, we get the logistic equation with fixed carrying capacity
eeg $\dot{x}=x(3-x)$ (with units in millions, s. carrying capacity

$$
\left\{\begin{array}{l}
\dot{y}=y(2-y) \\
\frac{d x}{1}=x(3-x)
\end{array}\right.
$$

$$
\text { is } 3 \text { million rabbits or } 2 \text { million sheep) }
$$

$$
\begin{aligned}
& \text { 1) } \frac{d x}{d t}=x(3-x) \\
& \frac{d x}{x(3-x)}=d t \\
& {\left[\frac{\frac{1}{3}}{x}+\frac{\frac{1}{3}}{3-x}\right] d x=d t} \\
& \frac{1}{3}\left[\frac{1}{x}+\frac{1}{3-x}\right] d x=d t \\
& \frac{1}{3}[\ln |x|-\ln |3-x|]=t+C \\
& \text { If } 0<x<3 \text {, } \\
& \begin{aligned}
\text { If } x & <0 \text { or } x^{>3} \\
-1+\frac{3}{3-x} & =-C e^{3 t} \\
\frac{3}{3-x} & =1-C e^{3 t} \\
3-x & =\frac{3}{1-C e^{3 t}} \\
x & =3-\frac{3}{1-C e^{3 t}}, C>0
\end{aligned} \\
& -1+\frac{3}{3-x}=C e^{3 t} \\
& \begin{aligned}
\text { If } x & <0 \text { or } x>3 \\
-1+\frac{3}{3-x} & =-C e^{3 t} \\
\frac{3}{3-x} & =1-C e^{3 t} \\
3-x & =\frac{3}{1-C e^{3 t}} \\
x & =3-\frac{3}{1-C e^{3 t}}, C>0
\end{aligned} \\
& \frac{3}{3-x}=1+C e^{36} \\
& \begin{aligned}
\text { If } x & <0 \text { or } x^{>3} \\
-1+\frac{3}{3-x} & =-C e^{3 t} \\
\frac{3}{3-x} & =1-C e^{3 t} \\
3-x & =\frac{3}{1-C e^{3 t}} \\
x & =3-\frac{3}{1-C e^{3 t}}, C>0
\end{aligned} \\
& 3-x=\frac{3}{1+C e^{3 t}} \\
& \begin{aligned}
\text { If } x & <0 \text { or } x^{>3} \\
-1+\frac{3}{3-x} & =-C e^{3 t} \\
\frac{3}{3-x} & =1-C e^{3 t} \\
3-x & =\frac{3}{1-C e^{3 t}} \\
x & =3-\frac{3}{1-C e^{3 t}}, C>0
\end{aligned} \\
& x=3-\frac{3}{1+C_{e}^{3 t}}, C>0 \\
& \begin{array}{l}
\ln \left|\frac{x}{3-x}\right|=3 t+C \\
\left|\frac{x}{3-x}\right|=C e^{3 t} \\
\left.1+\frac{3}{3-x} \right\rvert\,=C e^{3 t}
\end{array} \\
& \left|-1+\frac{3}{3-x}\right|=C e^{3 t}
\end{aligned}
$$

Or $x=0$ and $x=3$ are also solutions

- But both compete for the same food, so they come into conflict. These conflicts are proportional to both populations. Since sheep are bigger, let's say they win more often.

$$
\text { i.e. } \left.\quad \begin{array}{rl}
\dot{x} & =x(3-x)-2 x y=x(3-x-2 y) \\
\dot{y} & =y(2-y)-x y
\end{array}\right)=y(2-x-y)
$$

What is the behavior of this dynamical system? Do the rabbits and sheep live in harmony, or does one win and drive the other extinct? Let's look for five points, i.e., when $\dot{x}=0$ and $\dot{y}=0$,

Let's look for five points, i.e., when $\dot{x}=0$ and $\dot{y}=0$.

$$
\left.\begin{array}{l}
0=x(3-x-2 y) \\
0=y(2-x-y)
\end{array}\right\}
$$

Case 1: $x=0 \Rightarrow 0=y(2-y) \Rightarrow y=0,2$.
Case 2: $x \neq 0 . \Rightarrow 0=3-x-2 y$

$$
\begin{aligned}
& \Rightarrow \quad x=3-2 y \\
0 & =y[2-(3-2 y)-y] \\
& =y(-1+y)=0 \\
\Rightarrow y & =0, \quad y=1
\end{aligned}
$$

If $y=0, x=3$
If $y * 1, x=1$
4 fixed points: $(0,0) \quad C_{a n}$ we say anything about
$(0,2)$ the qualitative behavior around
$(3,0)$ these points?
$(1,1)$

The behavior along the axes precisely matches logistic growth of each of rabbits + sheep separately.

But how do the two population interact?
Can we tile about stability of each of these fixed points?
Stability: Here, we will not discuss the stability of the system as a whole because there are multiple fixed paints.
We call a fixed point x_{0} attracting if all trajectories starting near x_{0} approach it as $t \rightarrow \infty$.

We call a fixed point Liapunov stable if all trajectories that start sufficiently close to x_{0} remain close for all time.
If a fizzed point is both attracting and Liapunov stable, then we say it is asymptotically stable.

If a tied point is roth attracting and Liapunov stable, then we say it is asymptotically stable.
If a fixed point is Liapunov stable but not attracting, we call it neutrally stable.

Ex. $\quad y_{0}^{\ell} \in$ Atriceting α
\rightarrow 군 Liapurov stable

(大) $\frac{\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow}{\uparrow \uparrow \uparrow \uparrow \uparrow \uparrow}$ Not attracting

$$
\begin{aligned}
& \dot{x}=x+x y-(x+y) \sqrt{x^{2}+y^{2}} \\
& \dot{y}=y-x^{2}+(x-y) \sqrt{x^{2}+y^{2}} \quad \approx \quad \dot{r}=r(1-r) \\
& \dot{\varphi}=r(1-\cos \varphi)
\end{aligned}
$$

$(0,1)$ is attracting hat nut Liaqumov stable
(Very rare; normally attractive implies stable)
https://www.wolframalpha.com/input/?i=streamplot\[\{x+\%2B+xy+-+\(x\%2By\)\%
$28 x \% 5 E 2 \% 2 \mathrm{By} \% 5 \mathrm{E} 2 \% 29 \% 5 \mathrm{E} 0.5 \% 2 \mathrm{C}+\mathrm{y}+-+\mathrm{x} \% 5 \mathrm{E} 2+\% 2 \mathrm{~B}+\% 28 \mathrm{x}$-y $\% 29 \% 28 \mathrm{x} \% 5 \mathrm{E} 2 \% 2 \mathrm{By} \% 5 \mathrm{E} 2 \% 29 \%$ 5E0.5\%7D\%2C+\%7Bx\%2C-2\%2C2\%7D\%2C+\%7By\%2C-2\%2C2\%7D\%5D

Let's linearize our ODE around a point $\left(x_{0}, y_{0}\right)$

$$
\begin{aligned}
& \dot{x}=x(3-x-2 y) \quad \text { let } \quad z=\binom{x}{y}, \quad \dot{z}=\binom{\dot{x}}{\dot{y}} . \\
& \dot{y}=y(2-x-y)
\end{aligned}
$$

Recall the Taylor series of a function $f(x, y)$ around $\left(x_{0}, y_{0}\right)$

$$
f(x, y)=f\left(x_{0}, y_{0}\right)+\left(x-x_{0}\right) f_{x}\left(x_{0}, y_{0}\right)+\left(y-y_{\theta}\right) f_{y}\left(x_{0}, y_{0}\right)+\text { higher order texas }
$$

Around a fixed point $\left(x_{0}, y_{0}\right), \dot{x}\left(x_{0}, y_{0}\right)=\dot{y}\left(x_{0}, y_{0}\right)=0$.

$$
\dot{z}(x, y) \approx \underbrace{\left[\begin{array}{ll}
\frac{\partial \dot{x}}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial \dot{x}}{\partial y}\left(x_{0}, y_{0}\right) \\
\frac{\partial \dot{y}}{\partial x}\left(x_{0}, y_{0}\right) & \frac{\partial \dot{y}}{\partial y}\left(x_{0}, y_{0}\right)
\end{array}\right]}_{\text {Jacobian matrix }} \underbrace{\left[\begin{array}{l}
x-x_{0} \\
y-y_{0}
\end{array}\right]}_{\begin{array}{c}
\text { Trasblted corthiates } \\
\text { with } x_{0}, y_{0}
\end{array}}
$$

$\Rightarrow \dot{z} \approx A \bar{z}$, where $\bar{z}=\left[\begin{array}{l}x-x_{0} \\ y-y_{0}\end{array}\right]$.
Thus, around a fixed point, the behavior is approximately that of the linear system with the Jacobian as the matrix.
Back to rabbits and sheep.

$$
\begin{gathered}
\dot{x}=x(3-x-2 y)=3 x-x^{2}-2 x y \\
\dot{y}=y(2-x-y)=2 y-x y-y^{2} \\
J(x, y)=\left[\begin{array}{ll}
\frac{\partial \dot{x}}{\partial x} & \frac{\partial \dot{x}}{\partial y} \\
\frac{\partial \dot{y}}{\partial x} & \frac{\partial \dot{y}}{\partial y}
\end{array}\right]=\left[\begin{array}{cc}
3-2 x-2 y & -2 x \\
-y & 2-x-2 y
\end{array}\right]
\end{gathered}
$$

(0,2)

$$
\begin{aligned}
& J(0,0)=\left[\begin{array}{ll}
3 & 0 \\
0 & 2
\end{array}\right] \rightarrow \begin{array}{c}
\lambda=3,2 \\
\text { source }
\end{array} \quad v_{1}=\left[\begin{array}{l}
1 \\
0
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& J(0,2)=\left[\begin{array}{cc}
-1 & 0 \\
-2 & -2
\end{array}\right] \rightarrow \begin{array}{c}
\lambda=-1,-2 \\
\operatorname{sink}
\end{array} \quad v_{1}=\left[\begin{array}{c}
-1 \\
2
\end{array}\right], v_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& J(3,0)=\left[\begin{array}{cc}
-3 & -6 \\
0 & -1
\end{array}\right] \rightarrow \begin{array}{c}
\lambda=-1,-3 \\
\operatorname{sink}
\end{array} \quad v_{1}=\left[\begin{array}{c}
-3 \\
1
\end{array}\right], v_{2}=\left[\begin{array}{l}
1 \\
0
\end{array}\right] \\
& J(1,1)=\left[\begin{array}{ll}
-1 & -2 \\
-1 & -1
\end{array}\right] \rightarrow \begin{array}{l}
\lambda^{2}+2 \lambda-1=0 \\
\lambda=-1 \pm \sqrt{8} \\
\text { saddle point }
\end{array}=-1 \pm \sqrt{2}
\end{aligned}
$$

saddle point
Qualitation analysis
$(0,2)$ and $(3,0)$ are stable,

$$
\lambda_{1}=-1+\sqrt{2} \quad \lambda_{2}=-1-\sqrt{2}
$$

$$
\because-\lceil-\sqrt{2}\rceil
$$

$\Gamma \sqrt{2} 7$
$(0,2)$ and $(3,0)$ are stable,
but not $(1,1)$.
So the sheep and rabbits cannot live in harmony except exactly af $(1,1)$, Jut any perturbation will send it away.
Note: this qualitative analysis only works for non-borderline cases, i.e. when $\operatorname{Re}\left(\lambda_{1}\right) \neq 0$ and $\operatorname{Re}\left(\lambda_{2}\right) \neq 0$ and $\lambda_{1} \neq \lambda_{2}$.

Ex. $\quad \dot{x}=x^{2}-y$
$\dot{y}=x-y$
$J=\left[\begin{array}{cc}2 x & -1 \\ 1 & -1\end{array}\right]$

Fixed pts: $\left.\begin{array}{rl}x^{2}-y=0 \\ x-y=0\end{array}\right\} \begin{array}{ll}x^{2}-x=0 & x=0,1 \\ x=y & y=0,1\end{array}$

$$
\begin{aligned}
(0,0) \Rightarrow & J=\left[\begin{array}{ll}
0 & -1 \\
1 & -1
\end{array}\right] \\
& \lambda^{2}+\lambda+1=0 \\
& \lambda=\frac{-1 \pm \sqrt{1-4}}{2}=-\frac{1}{2} \pm \frac{\sqrt{3}}{2} i
\end{aligned}
$$

$\begin{aligned} & \text { spiral } \\ & \text { sink }\end{aligned} \quad\left[\begin{array}{cc}0 & -1 \\ 1 & -1\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\left[\begin{array}{l}0 \\ 1\end{array}\right]$

$$
\begin{aligned}
& -(1,1) \Rightarrow J=\left[\begin{array}{cc}
2 & -1 \\
1 & -1
\end{array}\right] \\
& \lambda^{2}-\lambda-1=0 \\
& \lambda=\frac{1}{2} \pm \frac{\sqrt{5}}{2} \\
& \lambda_{1}=\frac{1}{2}+\frac{\sqrt{5}}{2}>0 \quad \lambda_{2}=\frac{1}{2}-\frac{\sqrt{5}}{2}<0 \\
& \left.\left[\begin{array}{ll}
2 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) x_{1} \\
\left(\frac{1}{2}\right. \\
1 \\
\frac{\sqrt{5}}{2}
\end{array}\right) x_{2}\right] \quad\left[\begin{array}{ll}
2 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) x_{1} \\
\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) x_{2}
\end{array}\right] \\
& \Rightarrow \quad x_{1}-x_{2}=\left(\frac{1}{2}+\frac{\sqrt{5}}{2}\right) x_{2} \\
& x_{1}-x_{2}=\left(\frac{1}{2}-\frac{\sqrt{5}}{2}\right) x_{2} \\
& x_{1}=\left(\frac{3}{2}+\frac{\sqrt{5}}{2}\right) x_{2} \\
& x_{1}=\left(\frac{3}{2}-\frac{\sqrt{5}}{2}\right) x_{2} \\
& v_{1}=\left[\begin{array}{c}
\frac{3}{2}+\frac{\sqrt{5}}{2} \\
1
\end{array}\right] \approx\left[\begin{array}{c}
2.6 \\
1
\end{array}\right]
\end{aligned}
$$

Difference equations

Difference equations
For ODEs, time is taken to be continuous. This is great when the phenomenon is from e.g. physics where there isn't a minimum time. What cans we do when time is discrete? eng yearly interest from a bank account, or cicadas that reproduce once every 13 years.
Define: A first order difference equation by

$$
y_{n+1}=f\left(n, y_{n}\right), \quad n=0,1,2,3, \ldots, \quad y_{n} \in \mathbb{R} .
$$

It is linear if the function f is linear.
We can give initial conditions $y_{0}=\alpha$.
Often, we care about equations of the form $y_{n+1}=f\left(y_{n}\right)$, with no direct dependence on "time" n. i.e. the equivalent of autonomous.
Define: An equilibrium solution to be solution that is constant for all y_{n}. For autonomous difference equations, these correspond to fixed points $y_{n}=f\left(y_{n}\right)$.
Ex. Yow have a bank account that gives 10% interest per year, compounded annually. How much money is in your bark account after n years, if you started with $\$ 100$.

$$
\left.\begin{array}{l}
y_{n+1}=1.1 y_{n} \\
y_{0}=100
\end{array}\right\} \quad y_{n}=(1.1)^{n} y_{0}=(1.1)^{n} \cdot 100
$$

No equilibrium solution be cause your money grows indefinitely.
Ex. Yon have $\$ 26,000$ in student debt, which charges 6% (actually 6.45\%) interest per year, compounded monthly. i.e. each month you right nov are charged 0.5% interest. Each month you pay $\$ 200$. How how will it take to pay off your loan?
let $n=1,2, \ldots$ be number of months since graduation.

$$
y_{n+1}=(1.005) \cdot y_{n}-200, \quad y_{0}=26000
$$

Let's solve the more general case

$$
y_{n+1}=r \cdot y_{n}-b
$$

$$
\begin{aligned}
& y_{1}=r \cdot y_{0}-b \\
& y_{2}=r\left(r \cdot y_{0}-b\right)-b=r^{2} \cdot y_{0}-r \cdot b-b \\
& y_{3}=r^{3} y_{0}-r^{2} b-r b-b \\
& \vdots \\
& y_{n}=r^{n} y_{0}-r^{n-1} b-r^{n-2} b-\cdots-r b-b \\
& y_{n}=r^{n} y_{0}-b \cdot \sum_{i=1}^{n-1} r^{i}=r^{n} y_{0}-\frac{1-r^{n}}{1-r} \cdot b
\end{aligned}
$$

Setting $y_{n}=0$ and soling for n,

$$
\begin{gathered}
0=r^{n} y_{0}-\frac{1-r^{n}}{1-r} \cdot b \\
r^{n} y_{0}=\frac{1-r^{n}}{1-r} \cdot b \\
\frac{r^{n}}{1-r^{n}}=\frac{1}{1-r} \cdot \frac{b}{y_{0}} \\
-1+\frac{1}{1-r^{n}}=\frac{1}{1-r} \cdot \frac{b}{y_{0}} \\
\frac{1}{1-r^{n}}=1+\frac{1}{1-r} \cdot \frac{b}{y_{0}} \\
1-r^{n}=\frac{1}{1+\frac{1}{1-r} \cdot \frac{b}{y_{0}}} \\
r^{n}=1-\frac{1}{1+\frac{1}{1-r} \cdot \frac{b}{y_{0}}} \\
n \log r=\log \left(1-\frac{1}{1+\frac{1}{1-r} \cdot \frac{b}{y_{0}}}\right) \\
n=\log \left(1-\frac{1}{1+\frac{1}{1-r} \cdot \frac{b}{y_{0}}}\right) / \log r
\end{gathered}
$$

Letting $r=1.005, b=200, \quad Y_{0}=26000$

$$
n=210.489 \text { months. } \approx 17.5 \text { years }
$$

What if you pay $\$ 300$ a month instead?

What if you pay $\$ 300$ a math instead?

$$
n=113.881 \text { months } \approx 9.4 \text { years }
$$

